OR-Notes são uma série de notas introdutórias sobre temas que se enquadram no título geral do campo de pesquisa operacional (OR). Eles foram usados originalmente por mim em um curso OR introdutório que eu dou no Imperial College. Eles estão agora disponíveis para uso por qualquer estudante e professor interessado em OU, sujeito às seguintes condições. Uma lista completa dos tópicos disponíveis no OR-Notes pode ser encontrada aqui. Exemplos de previsão Exemplo de previsão 1996 exame UG A demanda por um produto em cada um dos últimos cinco meses é mostrada abaixo. Use uma média móvel de dois meses para gerar uma previsão de demanda no mês 6. Aplique suavização exponencial com uma constante de suavização de 0,9 para gerar uma previsão de demanda por demanda no mês 6. Qual dessas duas previsões você prefere e por que o movimento de dois meses A média dos meses de dois a cinco é dada por: A previsão para o mês seis é apenas a média móvel do mês anterior, ou seja, a média móvel para o mês 5 m 5 2350. Aplicando suavização exponencial com uma constante de suavização de 0,9, obtemos: como antes A previsão para o mês seis é apenas a média para o mês 5 M 5 2386 Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel de MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16.67 e para a média exponencialmente suavizada com uma constante de suavização de 0,9 MSD (13 - 17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Em geral, verificamos que o alisamento exponencial parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Por isso, preferimos a previsão de 2386 que foi produzida por suavização exponencial. Exemplo de previsão Exercício de 1994 UG A tabela abaixo mostra a demanda por um novo pós-afluxo em uma loja para cada um dos últimos 7 meses. Calcule uma média móvel de dois meses para os meses dois a sete. Qual seria a sua previsão para a demanda no mês oito Aplicar o alisamento exponencial com uma constante de suavização de 0,1 para obter uma previsão da demanda no mês oito. Quais das duas previsões para o mês oito você prefere e por que o dono da loja acredita que os clientes estão mudando para este novo aftershave de outras marcas. Discuta como você pode modelar esse comportamento de comutação e indicar os dados que você precisaria para confirmar se essa mudança está ocorrendo ou não. A média móvel de dois meses para os meses dois a sete é dada por: A previsão para o mês oito é apenas a média móvel do mês anterior, ou seja, a média móvel para o mês 7 m 7 46. Aplicando alisamento exponencial com uma constante de suavização de 0,1 nós Obter: como antes, a previsão para o mês oito é apenas a média do mês 7 M 7 31.11 31 (como não podemos ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,1. Em geral, vemos que a média móvel de dois meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Portanto, preferimos a previsão de 46 que foi produzida pela média móvel de dois meses. Para examinar a mudança, precisamos usar um modelo de processo Markov, onde as marcas dos estados e nós precisamos de informações de estado inicial e probabilidades de troca de clientes (de pesquisas). Nós precisamos executar o modelo em dados históricos para ver se temos um ajuste entre o modelo eo comportamento histórico. Exemplo de previsão 1992 exame UG A tabela abaixo mostra a demanda por uma determinada marca de navalha em uma loja para cada um dos últimos nove meses. Calcule uma média móvel de três meses nos meses três a nove. Qual seria a sua previsão para a demanda no mês dez Aplicar o alisamento exponencial com uma constante de suavização de 0,3 para obter uma previsão da demanda no mês dez. Qual das duas previsões para o mês dez você prefere e por que a média móvel de três meses para os meses 3 a 9 é dada por: A previsão para o mês 10 é apenas a média móvel do mês anterior, ou seja, a média móvel do mês 9 m 9 20.33. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 10 é de 20. Aplicando suavização exponencial com uma constante de suavização de 0,3, obtemos: como antes, a previsão para o mês 10 é apenas a média para o mês 9 M 9 18,57 19 (como nós Não pode ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,3. Em geral, verificamos que a média móvel de três meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Portanto, preferimos a previsão de 20 que foi produzida pela média móvel de três meses. Exemplo de previsão exame 1991 UG A tabela abaixo mostra a demanda por uma determinada marca de máquina de fax em uma loja de departamento em cada um dos últimos doze meses. Calcule a média móvel de quatro meses para os meses 4 a 12. Qual seria a sua previsão para a demanda no mês 13 Aplicar o alisamento exponencial com uma constante de suavização de 0,2 para obter uma previsão da demanda no mês 13. Qual das duas previsões para o mês 13 você prefere e por que outros fatores, não considerados nos cálculos acima, podem influenciar a demanda pelo aparelho de fax no mês 13. A média móvel de quatro meses para os meses 4 a 12 é dada por: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35.75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 A previsão para o mês 13 é apenas a média móvel do mês anterior, ou seja, a média móvel Para o mês 12 m 12 46,25. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 13 é 46. Aplicando suavização exponencial com uma constante de suavização de 0,2 nós obtemos: Como antes, a previsão para o mês 13 é apenas a média para o mês 12 M 12 38.618 39 (como nós Não pode ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,2. No geral, verificamos que a média móvel de quatro meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Por isso, preferimos a previsão de 46 que foi produzida pela média móvel de quatro meses. Demonstração sazonal da demanda, mudanças de preços, tanto esta marca como outras marcas, situação econômica geral, nova tecnologia. Exemplo de previsão, exame 1989 UG. A tabela abaixo mostra a demanda por uma determinada marca de forno de microondas em uma loja de departamento em cada um dos últimos doze meses. Calcule uma média móvel de seis meses para cada mês. Qual seria a sua previsão para a demanda no mês 13 Aplicar o alisamento exponencial com uma constante de suavização de 0,7 para obter uma previsão da demanda no mês 13. Qual das duas previsões para o mês 13 você prefere e por que agora não podemos calcular um seis Média móvel do mês até que tenhamos pelo menos 6 observações - ou seja, só podemos calcular essa média a partir do mês 6 em diante. Por isso, temos: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 A previsão para o mês 13 é apenas a média móvel para o Mês antes, ou seja, a média móvel para o mês 12 m 12 38,17. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 13 é de 38. Aplicando suavização exponencial com uma constante de suavização de 0,7, obtemos: Uma média móvel suavemente exponencial é uma média móvel ponderada na qual os fatores de peso são poderes de S. A constante de suavização. Uma média móvel suavizada exponencialmente é calculada sobre todos os dados acumulados até agora em vez de ser cortada após alguns dias. Para o dia d, a média móvel suavemente exponencial é: Mas esta é apenas uma seqüência geométrica. O próximo termo dessa seqüência é dado por: A d (1- S) M d SA d -1. O cálculo é acelerado e a compreensão é atendida se substituímos: P 1- S para S na equação para o próximo termo. Fazendo uma pequena álgebra, descobrimos: Esta reformulação torna a operação de suavização muito intuitiva. Todos os dias, tomamos o antigo número de tendência A d -1. Calcule a diferença entre ele e a medição de hoje M d. Então adicione uma porcentagem dessa diferença P ao valor de tendência antigo obtenha o novo. Obviamente, o P mais próximo é para 1 (e, portanto, o S mais próximo é zero), mais influência a nova medida na tendência. Se P 1, o valor de tendência antigo A d -1 cancela e a média móvel rastreia os dados com precisão. Por exemplo, com a constante de suavização S 0.9 que usamos em dados de peso, calculamos o novo valor de tendência A d do valor de tendência anterior A d -1 e o peso de hoje M d como: Em discussões de médias móveis suavemente exponentes, particularmente suas finanças Aplicações, tenha cuidado em confundir a constante de suavização S com a variante da forma P 1- S introduzida para simplificar o cálculo e tornar o efeito dos novos dados na média móvel mais aparente. P é muitas vezes referido como a porcentagem de suavização, o termo 10 suavização refere-se a um cálculo em que P 101000.1 e, portanto, S 0.9.Double Exponencial Moedas móveis explicadas Os comerciantes basearam-se em médias móveis para ajudar a identificar pontos de entrada de negociação de alta probabilidade e saídas lucrativas para muitos anos. Um problema bem conhecido com as médias móveis, no entanto, é o atraso grave que está presente na maioria dos tipos de médias móveis. A média móvel exponencial dupla (DEMA) fornece uma solução calculando uma metodologia de média mais rápida. História do Double Exponential Moving Average Na análise técnica. O termo médio móvel refere-se a uma média de preço para um instrumento comercial específico ao longo de um período de tempo especificado. Por exemplo, uma média móvel de 10 dias calcula o preço médio de um instrumento específico nos últimos dez dias, uma média móvel de 200 dias calcula o preço médio dos últimos 200 dias. Cada dia, o período de look-back avança para basear cálculos no último X número de dias. Uma média móvel aparece como uma linha suave e curva que fornece uma representação visual da tendência de longo prazo de um instrumento. As médias móveis mais rápidas, com períodos de retrocesso mais curtos, são médias móveis mais lisas e mais rápidas, com períodos mais longos, são mais suaves. Porque uma média móvel é um indicador retroativo, está atrasado. A média móvel exponencial dupla (DEMA), mostrada na Figura 1, foi desenvolvida por Patrick Mulloy na tentativa de reduzir o tempo de latência encontrado nas médias móveis tradicionais. Foi introduzido pela primeira vez na Revista Técnica de Análise Técnica de Stocks de fevereiro de 1994, no artigo da Mulloys, Suavizando dados com médias móveis mais rápidas. (Figura 1: Este gráfico de um minuto do contrato de futuros e-mini Russell 2000 mostra duas médias móveis exponenciais diferentes e um período de 55 vezes aparece em azul, Um período de 21 em rosa. Calculando uma DEMA como Mulloy explica em seu artigo original, o DEMA não é apenas uma EMA dupla com o dobro do tempo de atraso de uma única EMA, mas é uma implementação composta de EMAs simples e duplas que produzem outra EMA com menos atraso do que qualquer um dos originais dois. Em outras palavras, o DEMA não é simplesmente dois EMAs combinados, ou uma média móvel de uma média móvel, mas é um cálculo de EMAs simples e duplas. Quase todas as plataformas de análise de negociação possuem o DEMA incluído como um indicador que pode ser adicionado aos gráficos. Portanto, os comerciantes podem usar o DEMA sem conhecer a matemática por trás dos cálculos e sem ter que escrever ou inserir qualquer código. Comparando o DEMA com as médias móveis tradicionais, as médias móveis são um dos métodos mais populares de análise técnica. Muitos comerciantes usam-nos para detectar reversões de tendência. Especialmente em um crossover de média móvel, onde duas médias móveis de diferentes comprimentos são colocadas em um gráfico. Pontos onde as médias móveis cruzam podem significar oportunidades de compra ou venda. O DEMA pode ajudar os comerciantes a reverter mais cedo porque é mais rápido responder às mudanças na atividade do mercado. A Figura 2 mostra um exemplo do contrato de futuros e-mini Russell 2000. Este gráfico de um minuto tem quatro médias móveis aplicadas: 21-período DEMA (rosa) 55-período DEMA (azul escuro) 21-período MA (azul claro) 55-período MA (luz verde) Figura 2: Este gráfico de um minuto de O contrato de futuros e-mini Russell 2000 ilustra o tempo de resposta mais rápido do DEMA quando usado em um crossover. Observe como o crossover DEMA em ambos os casos aparece significativamente mais cedo do que os cruzamentos do MA. O primeiro cronômetro DEMA aparece às 12:29 e o próximo bar abre a um preço de 663,20. O cruzamento de MA, por outro lado, se forma às 12:34 e o próximo preço de abertura de barras é de 660,50. No próximo conjunto de crossovers, o cronômetro DEMA aparece às 1:33 e a próxima barra abre em 658. O MA, em contraste, forma às 1:43, com a próxima barra abrindo em 662.90. Em cada caso, o cronômetro DEMA fornece uma vantagem em entrar na tendência anterior ao cruzamento do MA. (Para mais informações, leia o Tutorial de Moedas em Movimento.) Negociação com um DEMA Os exemplos de cruzamento de média móvel acima ilustram a eficácia de usar a média móvel exponencial mais rápida e rápida. Além de usar o DEMA como um indicador autônomo ou em uma configuração crossover, o DEMA pode ser usado em uma variedade de indicadores, onde a lógica é baseada em uma média móvel. Ferramentas de análise técnica, como Bollinger Bands. A movimentação média média convergente (MACD) e a média móvel exponencial tripla (TRIX) são baseadas em tipos de média móvel e podem ser modificadas para incorporar uma DEMA em lugar de outros tipos mais tradicionais de médias móveis. Substituir o DEMA pode ajudar os comerciantes a detectar diferentes oportunidades de compra e venda que estão à frente daqueles fornecidos pelas MAs ou EMAs tradicionalmente utilizados nesses indicadores. Obviamente, entrar em uma tendência mais cedo e não mais tarde geralmente leva a maiores lucros. A Figura 2 ilustra esse princípio - se usássemos os crossovers como sinais de compra e venda. Nós inserimos os negócios significativamente mais cedo quando usamos o crossover DEMA em oposição ao cruzamento de MA. Bottom Line Traders e investidores usaram há muito tempo médias móveis em suas análises de mercado. As médias móveis são uma ferramenta de análise técnica amplamente utilizada que fornece um meio de visualizar e interpretar rapidamente a tendência a longo prazo de um determinado instrumento de negociação. Como as médias móveis pela própria natureza são indicadores de atraso. É útil ajustar a média móvel para calcular um indicador mais rápido e mais responsivo. A média móvel exponencial dupla fornece aos comerciantes e investidores uma visão da tendência a longo prazo, com a vantagem de ser uma média móvel mais rápida com menos tempo de atraso. (Para leitura relacionada, dê uma olhada no Combo de MACD em Movimento Médio e em Vendas de Expansão Simples Simples).
No comments:
Post a Comment